Search results for "Gravitational wave background"

showing 9 items of 9 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Estimate of the gravitational-wave background from the observed cosmological distribution of quasars

2021

We study the gravitational-wave background from the observed cosmological quasar distribution. Using the DR9Q quasar catalogue from the ninth data release of the Sloan Digital Sky Survey (SDSS), we create a complete, statistically consistent sample of quasars from $z=0.3$ to $5.4$. Employing the spectroscopic information from the catalogue we estimate the masses of the supermassive black holes hosted by the quasars in the sample, resulting in a log-normal distribution of mean $10^{8.32\pm0.33}M_{\odot}$. The computation of the individual gravitational-wave strains relies on specific functional forms derived from simulations of gravitational collapse and mergers of massive black hole binarie…

PhysicsSupermassive black hole010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectAstrophysics::Instrumentation and Methods for AstrophysicsPlane waveFOS: Physical sciencesQuasarGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundBlack holeGeneral Relativity and Quantum CosmologyDistribution (mathematics)Sky0103 physical sciencesGravitational collapse010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonPhysical Review D
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

Gravitational lensing on the Cosmic Microwave Background by gravity waves

1997

We study the effect of a stochastic background of gravitational waves on the gravitational lensing of the Cosmic Microwave Background (CMB) radiation. It has been shown that matter density inhomogeneities produce a smoothing of the acoustic peaks in the angular power spectrum of the CMB anisotropies. A gravitational wave background gives rise to an additional smoothing of the spectrum. For the most simple case of a gravitational wave background arising during a period of inflation, the effect results to be three to four orders of magnitude smaller than its scalar counterpart, and is thus undetectable. It could play a more relevant role in models where a larger background of gravitational wa…

PhysicsAstrophysics and AstronomyNuclear and High Energy PhysicsGravitational-wave observatoryGravitational waveGravitational lensing formalismStrong gravitational lensingAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGravitational energyGravitational wave backgroundGeneral Relativity and Quantum CosmologyWeak gravitational lensingGravitational redshift
researchProduct

The QCD Axion and Gravitational Waves in light of NANOGrav results

2020

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration has recently reported strong evidence for a stochastic process affecting the 12.5 yr dataset of pulsar timing residuals. We show that the signal can be interpreted in terms of a stochastic gravitational wave background emitted from a network of axionic strings in the early Universe. The spontaneous breaking of the Peccei-Quinn symmetry originate the axionic string network and the QCD axion, the dark matter particle in the model. We explore a non-standard cosmological model driven by an exotic scalar field $\phi$ which evolves under the influence of a self-interacting potential; the axion field starts t…

Quantum chromodynamicsPhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsGravitational waveEquation of state (cosmology)media_common.quotation_subjectDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyUniverseGravitational wave backgroundHigh Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem

2016

We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Gravitational-wave observatory010308 nuclear & particles physicsGravitational waveSpeed of gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Gravitational acceleration01 natural scienceslcsh:QC1-999General Relativity and Quantum CosmologyGravitational energyGravitational wave backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Classical mechanicsGravitational field0103 physical sciences010306 general physicslcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsGravitational redshiftPhysics Letters
researchProduct

Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run

2021

We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $\Omega_{\rm GW}\leq 5.8\times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity comi…

coalescencePhysics and Astronomy (miscellaneous)gravitation: modelAstronomypopulationAstrophysicspower spectrum01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational wave backgroundbackground: magneticenergy: densitycorrelation functionLIGOQCPOPULATIONQBPhysicsSettore FIS/01education.field_of_studySpectral indexPhysicsstar-formation ratestatistical analysis: BayesianIsotropicSTAR-FORMATION RATE; BLACK-HOLE; MASS; COALESCENCE; POPULATION; EVOLUTION; RADIATION; PROSPECTSCOALESCENCEPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]LIGO; Virgo; isotropic gravitational-wave backgroundIsotropic gravitational wave backgrounds with LIGO and VirgoAstrophysics - Cosmology and Nongalactic Astrophysicsgravitational radiation: polarizationdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)black-holePopulationFOS: Physical sciencesGravitational Waves LIGO Virgo Stochastic Background IsotropicGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsMASSSTAR-FORMATION RATEBinary black holebinary: coalescence0103 physical sciencesevolutionddc:530SDG 7 - Affordable and Clean Energy2ND010306 general physicseducationGravitational Waves/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundSpectral densityprospectsbinary: compactnoise: magneticLIGOEVOLUTIONisotropic gravitational-wave backgroundBlack holeradiationdetector: sensitivityPROSPECTSVIRGOpolarization: scalarblack hole: binaryGravitation Cosmology AstrophysicsBLACK-HOLEpolarization: vectorRADIATIONmassStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Whispers from the dark side: Confronting light new physics with NANOGrav data

2021

The NANOGrav collaboration has recently observed first evidence of a gravitational wave background (GWB) in pulsar timing data. Here we explore the possibility that this GWB is due to new physics, and show that the signal can be well fit also with peaked spectra like the ones expected from phase transitions (PTs) or from the dynamics of axion like particles (ALPs) in the early universe. We find that a good fit to the data is obtained for a very strong PT at temperatures around 1 MeV to 10 MeV. For the ALP explanation the best fit is obtained for a decay constant of $F \approx 5\times 10^{17}$ GeV and an axion mass of $2\times 10^{-13}$ eV. We also illustrate the ability of PTAs to constrain…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsPhysicsQC1-999Physics beyond the Standard Modelmedia_common.quotation_subjectGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsParameter space01 natural sciencesSpectral lineUniverseGravitational wave backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Pulsar0103 physical sciencesExponential decay010306 general physicsAxionAstrophysics - Cosmology and Nongalactic Astrophysicsmedia_common
researchProduct

Gravitational Wave Echo of Relaxion Trapping

2021

To solve the hierarchy problem, the relaxion must remain trapped in the correct minimum, even if the electroweak symmetry is restored after reheating. In this scenario, the relaxion starts rolling again until the backreaction potential, with its set of local minima, reappears. Depending on the time of barrier reappearance, Hubble friction alone may be insufficient to retrap the relaxion in a large portion of the parameter space. Thus, an additional source of friction is required, which might be provided by coupling to a dark photon.The dark photon experiences a tachyonic instability as the relaxion rolls, which slows down the relaxion by backreacting to its motion, and efficiently creates a…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Gravitational waveElectroweak interactionDark matterFOS: Physical sciencesHierarchy problemParameter spaceInstabilityDark photonGravitational wave backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct